The furrows of Rhinolophidae revisited.

نویسندگان

  • Dieter Vanderelst
  • Reijniers Jonas
  • Peremans Herbert
چکیده

Rhinolophidae, a family of echolocating bats, feature very baroque noseleaves that are assumed to shape their emission beam. Zhuang & Muller (Zhuang & Muller 2006 Phys. Rev. Lett. 97, 218701 (doi:10.1103/PhysRevLett.97.218701); Zhuang & Muller 2007 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(Pt. 1), 051902 (doi:10.1103/PhysRevE.76.051902)) have proposed, based on finite element simulations, that the furrows present in the noseleaves of these bats act as resonance cavities. Using Rhinolophus rouxi as a model species, they reported that a resonance phenomenon causes the main beam to be elongated at a particular narrow frequency range. Virtually filling the furrows reduced the extent of the main lobe. However, the results of Zhuang & Muller are difficult to reconcile with the ecological background of R. rouxi. In this report, we replicate the study of Zhuang & Muller, and extend it in important ways: (i) we take the filtering of the moving pinnae into account, (ii) we use a model of the echolocation task faced by Rhinolophidae to estimate the effect of any alterations to the emission beam on the echolocation performance of the bat, and (iii) we validate our simulations using a physical mock-up of the morphology of R. rouxi. In contrast to Zhuang & Muller, we find the furrows to focus the emitted energy across the whole range of frequencies contained in the calls of R. rouxi (both in simulations and in measurements). Depending on the frequency, the focusing effect of the furrows has different consequences for the estimated echolocation performance. We argue that the furrows act to focus the beam in order to reduce the influence of clutter echoes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls

Bats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant fr...

متن کامل

Dominant Glint Based Prey Localization in Horseshoe Bats: A Possible Strategy for Noise Rejection

Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable signals upon which to base prey ...

متن کامل

Effect of Slope Gradient and Soil Physical Properties on Soil Loss in Furrows of Rainfed Farms

This study was conducted to investigate the effect of slope gradient and soil physical properties (grain size distribution, bulk density, aggregate stability and permeability) on water erosion in the furrows of rainfed farms under fallow conditions. The furrows with 6 m length were installed in five rainfed farms with 6.1, 10.6, 14.8, 20.7 and 27.1% slope steepness at three replications. Resul...

متن کامل

A new species of horseshoe bat of the genus Rhinolophus from China (Chiroptera: Rhinolophidae).

A new species of the Rhinolophus philippinensis group (Chiroptera: Rhinolophidae) is described from Guangdong, Guangxi, and Jiangxi Provinces in China. Rhinolophus huananus n. sp. is characterized by the horseshoe, as well as by external and cranial characteristics that separate it at the species level from the other members of the philippinensis group. One of the small species of the philippin...

متن کامل

Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene.

Microchiroptera have diversified into many species whose size and the shapes of the complicated ear and nose have been adapted to their echolocation abilities. Their speciation processes, and intra- and interspecies relationships are still under discussion. Here we report on the geographical variation of Japanese Rhinolophus ferrumequinum and R. cornutus using the complete sequence of the mitoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 70  شماره 

صفحات  -

تاریخ انتشار 2012